Time-Optimal Control of Finite Dimensional Open Quantum Systems via a Model Predictive Strategy
Time-Optimal Control of Finite Dimensional Open Quantum Systems via a Model Predictive Strategy
To mitigate dissipative effects from environmental interactions and efficiently stabilize quantum states, time-optimal control has emerged as an effective strategy for open quantum systems. This paper extends the framework by incorporating Positive Operator-Valued Measures (POVMs) into the control process, enabling quantum measurements to guide control updates at each step. To address uncertainties in measurement outcomes, we derive a lower bound on the probability of obtaining a desired outcome from POVM-based measurements and establish stability conditions that ensure a monotonic decrease in the cost function. The proposed method is applied to finite-level open quantum systems, and we also present a detailed analysis of two-level systems under depolarizing, phase-damping, and amplitude-damping channels. Numerical simulations validate the effectiveness of the strategy in preserving coherence and achieving high fidelity across diverse noise environments.
Yunyan Lee、Ian R. Petersen、Daoyi Dong
原子能技术基础理论
Yunyan Lee,Ian R. Petersen,Daoyi Dong.Time-Optimal Control of Finite Dimensional Open Quantum Systems via a Model Predictive Strategy[EB/OL].(2025-08-22)[2025-09-06].https://arxiv.org/abs/2508.16205.点此复制
评论