A vectorial Darboux transformation for integrable matrix versions of the Fokas-Lenells equation
A vectorial Darboux transformation for integrable matrix versions of the Fokas-Lenells equation
Using bidifferential calculus, we derive a vectorial binary Darboux transformation for an integrable matrix version of the first negative flow of the Kaup-Newell hierarchy. A reduction from the latter system to an integrable matrix version of the Fokas-Lenells equation is then shown to inherit a corresponding vectorial Darboux transformation. Matrix soliton solutions are derived from the trivial seed solution. Furthermore, the Darboux transformation is exploited to determine in a systematic way exact solutions of the two-component vector Fokas-Lenells equation on a plane wave background. This includes breathers, dark solitons, rogue waves and "beating solitons".
Folkert Müller-Hoissen、Rusuo Ye
数学物理学
Folkert Müller-Hoissen,Rusuo Ye.A vectorial Darboux transformation for integrable matrix versions of the Fokas-Lenells equation[EB/OL].(2025-08-24)[2025-09-06].https://arxiv.org/abs/2508.17534.点此复制
评论