Derived Stratified-Microlocal Framework and Moduli Space Resolution for the Cheeger-Goresky-Macpherson Conjecture
Derived Stratified-Microlocal Framework and Moduli Space Resolution for the Cheeger-Goresky-Macpherson Conjecture
In this paper, We define the stratified metric $\infty$-category $\mathbf{StratMet}_{\infty}$ and the middle perversity moduli stack $\mathscr{M}^{\mathrm{mid}}$. We construct a universal truncation complex $Ω_{X,\mathrm{FS}}^{\bullet,\mathrm{univ}}$ for a projective variety $X\subseteq\mathbb{P}^N$. By introducing the stratified singular characteristic variety $\mathrm{SSH}_{\mathrm{strat}}$, we establish a microlocal correspondence between metric asymptotic behavior and topology, proving the natural isomorphism $$H_2^*(X_{\mathrm{reg}},ds_{\mathrm{FS}}^2)\cong IH^*(X,\mathbb{C}).$$ This framework transcends transverse singularity constraints, achieves moduli space paramet- rized duality, and develops new paradigms for high-codimension singular topology, quantum singularity theory, and $p$-adic Hodge theory.
Jiaming Luo
数学
Jiaming Luo.Derived Stratified-Microlocal Framework and Moduli Space Resolution for the Cheeger-Goresky-Macpherson Conjecture[EB/OL].(2025-08-25)[2025-09-04].https://arxiv.org/abs/2508.17833.点此复制
评论