|国家预印本平台
| 注册
首页|Rephasing invariant formulae for general parameterizations of flavor mixing matrix and exact sum rules with unitarity triangles

Rephasing invariant formulae for general parameterizations of flavor mixing matrix and exact sum rules with unitarity triangles

Rephasing invariant formulae for general parameterizations of flavor mixing matrix and exact sum rules with unitarity triangles

来源:Arxiv_logoArxiv
英文摘要

In this letter, we present rephasing invariant formulae $δ^{(αi)} = \arg [ { V_{α1} V_{α2} V_{α3} V_{1i} V_{2i} V_{3i} / V_{αi }^{3} \det V } ] $ for CP phases $δ^{(αi)}$ associated with nine Euler-angle-like parameterizations of a flavor mixing matrix. Here, $α$ and $i$ denote the row and column carrying the trivial phases in a given parameterization. Furthermore, we show that the phases $δ^{(αi)}$ and the nine angles $Φ_{αi}$ of unitarity triangles satisfy compact sum rules $ δ^{(α, i+2)} - δ^{(α, i+1)} = Φ_{α-2, i} - Φ_{α-1, i}$ and $ δ^{(α-2, i)} - δ^{(α-1, i)} = Φ_{α, i+2} - Φ_{α, i+1}$ where all indices are taken cyclically modulo three. These twelve relations are natural generalizations of the previous result $δ_{\mathrm{PDG}}+δ_{\mathrm{KM}}=π-α+γ.$

Masaki J. S. Yang

物理学

Masaki J. S. Yang.Rephasing invariant formulae for general parameterizations of flavor mixing matrix and exact sum rules with unitarity triangles[EB/OL].(2025-08-25)[2025-09-06].https://arxiv.org/abs/2508.17866.点此复制

评论