Rephasing invariant formulae for general parameterizations of flavor mixing matrix and exact sum rules with unitarity triangles
Rephasing invariant formulae for general parameterizations of flavor mixing matrix and exact sum rules with unitarity triangles
In this letter, we present rephasing invariant formulae $δ^{(αi)} = \arg [ { V_{α1} V_{α2} V_{α3} V_{1i} V_{2i} V_{3i} / V_{αi }^{3} \det V } ] $ for CP phases $δ^{(αi)}$ associated with nine Euler-angle-like parameterizations of a flavor mixing matrix. Here, $α$ and $i$ denote the row and column carrying the trivial phases in a given parameterization. Furthermore, we show that the phases $δ^{(αi)}$ and the nine angles $Φ_{αi}$ of unitarity triangles satisfy compact sum rules $ δ^{(α, i+2)} - δ^{(α, i+1)} = Φ_{α-2, i} - Φ_{α-1, i}$ and $ δ^{(α-2, i)} - δ^{(α-1, i)} = Φ_{α, i+2} - Φ_{α, i+1}$ where all indices are taken cyclically modulo three. These twelve relations are natural generalizations of the previous result $δ_{\mathrm{PDG}}+δ_{\mathrm{KM}}=Ï-α+γ.$
Masaki J. S. Yang
物理学
Masaki J. S. Yang.Rephasing invariant formulae for general parameterizations of flavor mixing matrix and exact sum rules with unitarity triangles[EB/OL].(2025-08-25)[2025-09-06].https://arxiv.org/abs/2508.17866.点此复制
评论