Extremizers of a Fourier uncertainty principle related to averaging
Extremizers of a Fourier uncertainty principle related to averaging
We study the uncertainty principle $$\lVert\widehatμ(ξ) |ξ|^β\rVert_\infty^α \left(\int |x|^αd μ\right)^β \geq C(α,β,d){\lVertμ\rVert_{TV}^{α+β}}$$ for finite non-negative measures on $\mathbb{R}^d $. We prove that $C(α,β,d)>0$ for all $α,β>0$ and that extremizers exist. Moreover, we obtain an abstract characterization of the extremizers, which allows us to describe their asymptotic behavior and, for certain parameter values, to determine them explicitly.
Miquel Saucedo、Sergey Tikhonov
数学
Miquel Saucedo,Sergey Tikhonov.Extremizers of a Fourier uncertainty principle related to averaging[EB/OL].(2025-08-25)[2025-09-06].https://arxiv.org/abs/2508.17938.点此复制
评论