Generative AI in Map-Making: A Technical Exploration and Its Implications for Cartographers
Generative AI in Map-Making: A Technical Exploration and Its Implications for Cartographers
Traditional map-making relies heavily on Geographic Information Systems (GIS), requiring domain expertise and being time-consuming, especially for repetitive tasks. Recent advances in generative AI (GenAI), particularly image diffusion models, offer new opportunities for automating and democratizing the map-making process. However, these models struggle with accurate map creation due to limited control over spatial composition and semantic layout. To address this, we integrate vector data to guide map generation in different styles, specified by the textual prompts. Our model is the first to generate accurate maps in controlled styles, and we have integrated it into a web application to improve its usability and accessibility. We conducted a user study with professional cartographers to assess the fidelity of generated maps, the usability of the web application, and the implications of ever-emerging GenAI in map-making. The findings have suggested the potential of our developed application and, more generally, the GenAI models in helping both non-expert users and professionals in creating maps more efficiently. We have also outlined further technical improvements and emphasized the new role of cartographers to advance the paradigm of AI-assisted map-making.
Claudio Affolter、Sidi Wu、Yizi Chen、Lorenz Hurni
地理计算技术、计算机技术
Claudio Affolter,Sidi Wu,Yizi Chen,Lorenz Hurni.Generative AI in Map-Making: A Technical Exploration and Its Implications for Cartographers[EB/OL].(2025-08-26)[2025-09-06].https://arxiv.org/abs/2508.18959.点此复制
评论