Reducing parametric uncertainties through information geometry methods
Reducing parametric uncertainties through information geometry methods
Information geometry is a study of applying differential geometry methods to challenging statistical problems, such as uncertainty quantification. In this work, we use information geometry to study how measurement uncertainties in pre-neutron emission mass distributions affect the parameter estimation in the Hauser-Feshbach fission fragment decay code, CGMF. We quantify the impact of reduced uncertainties on the pre-neutron mass yield of specific masses to these parameters, for spontaneous fission of ${}^{252}$Cf, first using a toy model assuming Poissonian uncertainties, then an experimental measurement taken from Göök et al., 2014 in EXFOR. We achieved a reduction of up to $\sim15\%$ in CGMF parameter errors, predominantly in $w_0^{(1)}$ and $w_1^{(0)}$.
M. Imbrišak、A. E. Lovell、M. R. Mumpower
物理学数学
M. Imbrišak,A. E. Lovell,M. R. Mumpower.Reducing parametric uncertainties through information geometry methods[EB/OL].(2025-08-26)[2025-09-06].https://arxiv.org/abs/2508.19474.点此复制
评论