Generalizable AI Model for Indoor Temperature Forecasting Across Sub-Saharan Africa
Generalizable AI Model for Indoor Temperature Forecasting Across Sub-Saharan Africa
This study presents a lightweight, domain-informed AI model for predicting indoor temperatures in naturally ventilated schools and homes in Sub-Saharan Africa. The model extends the Temp-AI-Estimator framework, trained on Tanzanian school data, and evaluated on Nigerian schools and Gambian homes. It achieves robust cross-country performance using only minimal accessible inputs, with mean absolute errors of 1.45°C for Nigerian schools and 0.65°C for Gambian homes. These findings highlight AI's potential for thermal comfort management in resource-constrained environments.
Zainab Akhtar、Eunice Jengo、Björn Haßler
环境科学技术现状计算技术、计算机技术
Zainab Akhtar,Eunice Jengo,Björn Haßler.Generalizable AI Model for Indoor Temperature Forecasting Across Sub-Saharan Africa[EB/OL].(2025-08-27)[2025-09-06].https://arxiv.org/abs/2508.20260.点此复制
评论