|国家预印本平台
首页|基于混合专家大模型提取的“基因-疾病-药物”三元知识图谱的设计

基于混合专家大模型提取的“基因-疾病-药物”三元知识图谱的设计

英文摘要

his paper focuses on extracting "gene - disease - drug" triplet knowledge from biomedical literature based on knowledge graphs. The core tasks include mining "gene - disease" associations from PubMed abstracts, extracting "compound - disease" entities and relationships from PubMed literature, and identifying drug - drug interactions fromDrugBank database texts. By employing the Mixture of Experts (MoE) model and going through steps such as data preprocessing, model fine - tuning (e.g., LoRA for efficient parameter - efficient fine - tuning) and result evaluation, this project utilizes large language models to structurally extract key knowledge from biomedical literature, thereby supporting medicalresearch and knowledge discovery

田子晗、马豪飞、常嵘、马明、王吉刚、李梓铭

新疆大学计算机科学与技术学院新疆大学计算机科学与技术学院新疆大学计算机科学与技术学院新疆大学计算机科学与技术学院新疆大学计算机科学与技术学院新疆大学计算机科学与技术学院

生物科学研究方法、生物科学研究技术药学

知识图谱混合专家模型大语言模型

Knowledge GraphMixture of ExpertsLarge Language Model

田子晗,马豪飞,常嵘,马明,王吉刚,李梓铭.基于混合专家大模型提取的“基因-疾病-药物”三元知识图谱的设计[EB/OL].(2025-08-31)[2025-09-03].https://chinaxiv.org/abs/202508.00425.点此复制

评论