|国家预印本平台
| 注册
首页|Roadmap: 2D Materials for Quantum Technologies

Roadmap: 2D Materials for Quantum Technologies

Qimin Yan Tongcang Li Xingyu Gao Sumukh Vaidya Saakshi Dikshit Yue Luo Stefan Strauf Reda Moukaouine Anton Pershin Adam Gali Zhenyao Fang Harvey Stanfield Ivan J. Vera-Marun Michael Newburger Simranjeet Singh Tiancong Zhu Mauro Brotons-Gisbert Klaus D. Jöns Brian D. Gerardot Brian S. Y. Kim John R. Schaibley Kyle L. Seyler Jesse Balgley James Hone Kin Chung Fong Lin Wang Guido Burkard Yihang Zeng Tobias Heindel Serkan Ateş Tobias Vogl Igor Aharonovich

Arxiv_logoArxiv

Roadmap: 2D Materials for Quantum Technologies

Qimin Yan Tongcang Li Xingyu Gao Sumukh Vaidya Saakshi Dikshit Yue Luo Stefan Strauf Reda Moukaouine Anton Pershin Adam Gali Zhenyao Fang Harvey Stanfield Ivan J. Vera-Marun Michael Newburger Simranjeet Singh Tiancong Zhu Mauro Brotons-Gisbert Klaus D. Jöns Brian D. Gerardot Brian S. Y. Kim John R. Schaibley Kyle L. Seyler Jesse Balgley James Hone Kin Chung Fong Lin Wang Guido Burkard Yihang Zeng Tobias Heindel Serkan Ateş Tobias Vogl Igor Aharonovich

作者信息

Abstract

Two-dimensional (2D) materials have emerged as a versatile and powerful platform for quantum technologies, offering atomic-scale control, strong quantum confinement, and seamless integration into heterogeneous device architectures. Their reduced dimensionality enables unique quantum phenomena, including optically addressable spin defects, tunable single-photon emitters, low-dimensional magnetism, gate-controlled superconductivity, and correlated states in Moiré superlattices. This Roadmap provides a comprehensive overview of recent progress and future directions in exploiting 2D materials for quantum sensing, computation, communication, and simulation. We survey advances spanning spin defects and quantum sensing, quantum emitters and nonlinear photonics, computational theory and data-driven discovery of quantum defects, spintronic and magnonic devices, cavity-engineered quantum materials, superconducting and hybrid quantum circuits, quantum dots, Moiré quantum simulators, and quantum communication platforms. Across these themes, we identify common challenges in defect control, coherence preservation, interfacial engineering, and scalable integration, alongside emerging opportunities driven by machine$-$learning$-$assisted design and integrated experiment$-$theory feedback loops. By connecting microscopic quantum states to mesoscopic excitations and macroscopic device architectures, this Roadmap outlines a materials-centric framework for integrating coherent quantum functionalities and positions 2D materials as foundational building blocks for next-generation quantum technologies.

引用本文复制引用

Qimin Yan,Tongcang Li,Xingyu Gao,Sumukh Vaidya,Saakshi Dikshit,Yue Luo,Stefan Strauf,Reda Moukaouine,Anton Pershin,Adam Gali,Zhenyao Fang,Harvey Stanfield,Ivan J. Vera-Marun,Michael Newburger,Simranjeet Singh,Tiancong Zhu,Mauro Brotons-Gisbert,Klaus D. Jöns,Brian D. Gerardot,Brian S. Y. Kim,John R. Schaibley,Kyle L. Seyler,Jesse Balgley,James Hone,Kin Chung Fong,Lin Wang,Guido Burkard,Yihang Zeng,Tobias Heindel,Serkan Ateş,Tobias Vogl,Igor Aharonovich.Roadmap: 2D Materials for Quantum Technologies[EB/OL].(2025-12-16)[2025-12-24].https://arxiv.org/abs/2512.14973.

学科分类

物理学/信息科学、信息技术

评论

首发时间 2025-12-16
下载量:0
|
点击量:21
段落导航相关论文