利用嵌入方法实现个性化查询重构
Personalized Query Reformulations with Embeddings
作为能引导用户表达信息需求的机制,查询重构主要基于用户所提交的历史查询来生成相关候选查询重构列表。为了使得候选查询能与用户最初意图保持一致,当前大多数的查询重构方法方法是根据查询词之间的共现信息来获得查询词的上下文信息,再利用上下文的相似性来生成候选查询推荐,最后通过对查询中词之间的语义一致性建模来对实现候选查询进行排序。而本文中以利用嵌入方法来实现个性化查询重构,即首先利用查询词嵌入 技术为每个查询获得该词上下文信息的词向量,再利用词向量进一步构建表征用户偏好的向量,从而基于词向量与用户向量实现根据用户偏好生成候选查询;本文进一步采用主题嵌入 来抽取每个潜在主题的上下文信息,最后利用隐马尔科夫模型(HMM)融合词向量、用户向量和主题向量来实现根据用户偏好对候选查询的排序。实验结果表明,本文的方法优于已有相关方法。
As a mechanism to guide users towards a better representation of their information need, a query reformulation method generates new queries based on the queries issued by users. To preserve the original search intent, most of the current query reformulation methods are to obtain the context information of query term based on the co-occurrence information between the query terms, and then use the contextual similarities to generate candidate query reformulations. Finally, these candidate query reformulations are scored according to the semantic consistency of terms, dependency among latent semantic topics and users’ preferences. However, we exploit embeddings method to realize the personalized query reformulation. Firstly, we use the query term embedding technique to obtain the vector of each, and this vector represents the contextual information for each term. Secondly, the vector which characterize the users’ preference are constructed by using the tem vectors, and candidate query reformulations are generated according to user preference based on term vectors and user vectors. Finally, topic embeddings are proposed to extract the context information of each latent topic of term, and hidden Markov model (HMM) is used to integrate tem vectors, user vectors and topic vectors to re-rank the candidate query reformulations based on users ‘personalization. The final experimental results show that the method outperforms the existing method.
张晓娟
西南大学计算机与信息科学学院
科学交流与知识传播
查询重构 个性化 词嵌入
Query reformulation personalization embeddings
国家社科基金 融合用户个性化与实时性意图的查询推荐模型研究( 15 CT Q019 )
张晓娟.利用嵌入方法实现个性化查询重构[EB/OL].(2022-06-29)[2024-12-22].https://sinoxiv.napstic.cn/article/3444801.点此复制
评论