|国家预印本平台
首页|查询推荐研究综述

查询推荐研究综述

来源:istic_logo国家预印本平台
中文摘要英文摘要

查询推荐是一种提高用户搜索效率的重要技术,其核心任务是帮助用户构造有效查询以此准确描述用户信息需求。作为当今搜索引擎的核心技术之一,查询推荐吸引了学术界和工业界的广泛关注,一直以来都是信息检索领域中重要的研究主题。本文以国内外会议、期刊发表的有关查询推荐研究文献为对象,利用归纳总结方法,首先详细梳理了查询推荐中主流方法——基于简单共现信息的方法、基于图模型的方法以及融合多种信息的方法,然后总结评述了评测方法与指标,最后分析了未来可能的研究方向。

Query suggestion is an important technique for improving search efficiency and its core task is to help users construct effective queries to accurately describe users’ information requirements. As one of the core technologies of search engine, query suggestion has attracted wide attention in both academia and industry and has long been considered to be an important research topic in information retrieval. This paper summarizes the recent research progress in query suggestion using papers published in China’s and international conferences and journals. On this basis, the mainstream methods—simple occurrence information-based method, graph-based method and integration of multiple information-based methods are reviewed in detail in this paper. And then, the related evaluation methods and metrics are summarized and commented. Finally, the possible future research directions are pointed out.

张晓娟、彭 琳、李 倩

西南大学计算机与信息科学学院中国科学院文献情报中心山西大学经济与管理学院

10.12383/202206270046V1

科学交流与知识传播

查询推荐查询用户意图查询会话

Query suggestion query user intentquery session

国家社科基金 融合用户个性化与实时性意图的查询推荐模型研究( 15 CT Q019 )

张晓娟,彭 琳,李 倩.查询推荐研究综述[EB/OL].(2022-06-29)[2024-12-22].https://sinoxiv.napstic.cn/article/3444802.点此复制

评论