|国家预印本平台
首页|基于HDP过程模型与学术会议的学科新兴主题发现研究 --以“人工智能”领域为例

基于HDP过程模型与学术会议的学科新兴主题发现研究 --以“人工智能”领域为例

Research on the emerging topic of HDP process model and academic conference: A case study in the field of artificial intelligence

来源:istic_logo国家预印本平台
中文摘要英文摘要

[目的/意义]针对研究人员所面临的学术信息过载的困境,尝试从海量科技会议的议题报告中发现新兴主题,及时跟踪各领域研究动向,为科研人员的科学研究提供辅助决策。[方法/过程]首先采集某领域国际会议的议题报告,然后通过无参数概率主题模型(HDP)对文档进行无监督主题抽取,进而结合新颖度(NI)、会议出现率(COR)以及主题强度比(TIR)等指标,对主题所处的生命周期(生成、新兴、成熟、衰老)阶段进行判定。[结果/结论]利用上述方法对2008-2017年度人工智能领域的660份议题报告的分析,共抽取39个主题,对主题所处阶段进行判定,从而发现目标新兴主题。结果表明:该方法能准确高效的识别新兴主题,同时能为新兴主题趋势预测提供可视化。

[Purpose/Significance] In order to solve the plight of academic information overload for researchers, this article discovers emerging topics from the amounts of science and technology information, and timely tracking every field research trend, to provide auxiliary decision-making for scientific research. [Method/Process] Using Python crawler technology to acquire international conference documents of artificial intelligence from 2008 to 2017, and select no- parameters probability model (HDP) to extract topic with non-supervision mode. Then, this paper comes up with aggregative indicator named topic intensity ratio (TIR) for emerging topic discovery and combines with the novelty (NI) and conference occurrence ratio (COR) to determine topics’ stage on the life cycle (generating, emerging, mature, recession). [Result/Conclusion] This experiment used probability model (HDP) to gain 39 topics from 660 artificial intelligence documents collected, and then to discover emerging topics on the basis of the evaluation standards. The experimental results show that this method can accurately and effectively detect the emerging topics from the data source, and can make a visual analysis on the development trend of the emerging topics.

肖兵、叶光辉、程秀峰

10.12383/202206280022V1

科学交流与知识传播

新兴主题学术会议HDP模型人工智能

emerging topicacademic conferencehierarchical dirichlet process modelartificial intelligence

社科基金重大项目 基于多维度聚合的网络资源知识发现研究( 13&ZD183 ) 国家自科青年项目 基于QSIM 的图书馆移动用户群体行为模拟与学习兴趣引导研究( 71503097 ) 中央高校基本科研业务费项目 基于社会化标签挖掘的城市画像研究( CCNU18QN040 )

肖兵,叶光辉,程秀峰.基于HDP过程模型与学术会议的学科新兴主题发现研究 --以“人工智能”领域为例[EB/OL].(2022-07-07)[2024-12-22].https://sinoxiv.napstic.cn/article/3444821.点此复制

评论