锂离子电池单体的功率预测估计
Research on power prediction of lithium-ion battery cell
动力电池的荷电状态(SOC)和功率状态(SOP)的估计是电动汽车动力电池管理系统的核心功能之一。估计动力电池峰值功率可以评估动力电池组在不同荷电状态下充、放电功率极限能力,确保汽车可以工作在最佳性能区域。在单体电池模型基础上,提出了一种峰值功率预测算法,使用这个方法预测得到的峰值功率具有精度高、运算速度快等特点。首先根据电池的等效电路模型,利用递推最小二乘(RLS)辨识电池单体参数,在参数实时更新的基础上考虑电池SOC、端电压、电流和功率极限的影响预测电池峰值功率,最后利用UDDS和NEDC两种测试工况对比测得的最大充放电功率的真实值与估计值,验证功率预测算法的有效性。
he estimations on the state of charge (SOC) and the state of power (SOP) of lithium-ion battery have formed the core functions of the Battery Management System (BMS) in EVs. The peak power estimation of the battery can be used to evaluate the charging and discharging power limiting capability of the battery pack under different states of charge, so as to ensure that the car can work in the best performance area. Based on the single cell model, we proposed a peak power prediction algorithm. The peak power obtained by this method has the characteristics of high precision and fast computing speed. Firstly, we built the equivalent circuit model of the cell and identified the parameters of the model using the recursive least square (RLS) method. Then, we predicted the peak power of the battery cell, taking into account of the influence of the SOC, terminal voltage, current and power limitation. Finally, the peak power prediction algorithm was validated by the Urban Dynamometer Driving Schedule (UDDS) test and the New European Driving Cycle (NEDC) test.
孙泽昌、曾雷、夏菊军、顾伟军
能源动力工业经济电工技术概论自动化技术、自动化技术设备
锂离子电池递推最小二乘RLS峰值功率预测
lithium-ion batteryrecursive least square (RLS)peak power prediction
孙泽昌,曾雷,夏菊军,顾伟军.锂离子电池单体的功率预测估计[EB/OL].(2017-05-17)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201705-1115.点此复制
评论