|国家预印本平台
首页|偏最小二乘路径模型中的分类变量:客户满意度研究的应用

偏最小二乘路径模型中的分类变量:客户满意度研究的应用

Handling categorical variables in PLS path modeling: application in customer satisfaction study

中文摘要英文摘要

传统的PLS路径模型的基于顾客满意度模型只能处理连续或Likert量表和变量。本研究提出了一种称为分类变量的偏最小二乘法(CPL)可以在PLS路径模型处理分类变量。通过共同分析分类和数值变量,在同一模型中,所提出的算法是适用于这两种模式(反射型测量模型)和模式乙(形成型测量模型)。在家电品牌的顾客满意度研究的背景下,完整的使用包括开发过程中模型的CPL路径模型,对该算法的模型的评价和结果的应用进行了论证。此外,作者总结了他们的研究的局限性和建议,为今后的研究。

raditional PLS path modeling-based customer satisfaction model could only handle continuous or Likert scale like variables. This study proposed an algorithm called categorical-variable partial least squares (CPLS) to handling categorical variables in PLS path modeling. Both categorical and numerical variables can be jointly analyzed in the same model and the proposed algorithm is suitable for both Mode A (reflective measurement model) and Mode B (formative measurement model). This algorithm was illustrated empirically in the context of a household appliance brand's customer satisfaction study. A complete process of using CPLS path modeling including model development, model assessment and the applications of the results were demonstrated. Moreover, the authors concluded with the limitations of their study and suggestions for future research.

刘金兰、康键、白寅

数学

PL路径建模PLS路径模型顾客满意度

PLS path modelingPLS path modelingcustomer satisfactioncategorical variables.

刘金兰,康键,白寅.偏最小二乘路径模型中的分类变量:客户满意度研究的应用[EB/OL].(2015-11-30)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201511-820.点此复制

评论