基于SE注意力机制与残差网络的胃溃疡良恶性分类研究
lassification of benign and malignant gastric ulcers based on SE attention and residual network
目的:本文针对胃溃疡内窥镜检查图像人工审查效率低下以及恶性胃溃疡误诊和漏诊现象的问题,提出一种基于卷积神经网络的胃溃疡良恶性分类算法。方法:本文针对医学图像数据总量少、样本类别间数目分布不均衡的问题进行了深入研究,探讨了瓶颈结构、SE注意力机制以及残差结构构造的卷积神经网络模型在普通消化内镜图像的良恶性胃溃疡病变检测分类问题上的效果。结果:模型的F1-score得分为92.58%,敏感度为90.95%,特异度为85.44%,准确率为94.28%。结论:本研究提出的基于卷积神经网络的胃溃疡良恶性分类算法能够有效地对良恶性胃溃疡进行分类。
Objective: This paper addresses the problems of low efficiency of endoscopic examination of gastric ulcer images and the misdiagnosis and missed diagnosis of malignant gastric ulcers, and proposes a benign and malignant classification algorithm for gastric ulcers based on convolutional neural networks. Methods: This paper has conducted in-depth research on the problem of small total amount of medical image data and uneven distribution of the number of sample categories. The bottleneck structure, SE attention mechanism, and residual structure structure of convolutional neural network models are discussed in general digestive endoscopy. Image classification of benign and malignant gastric ulcer lesions. Results: The model\'s F1-score score was 92.58%, the sensitivity was 90.95%, the specificity was 85.44%, and the accuracy was 94.28%. Conclusion: The convolutional neural network-based benign and malignant classification algorithm proposed in this study can effectively classify benign and malignant gastric ulcers.
张文宝、周晓光
内科学医学研究方法计算技术、计算机技术
深度学习残差网络胃溃疡注意力机制
deep learningresidual networkgastric ulcerattention mechanism
张文宝,周晓光.基于SE注意力机制与残差网络的胃溃疡良恶性分类研究[EB/OL].(2020-04-07)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202004-45.点此复制
评论