|国家预印本平台
首页|基于经验小波变换的滚动轴承故障诊断研究

基于经验小波变换的滚动轴承故障诊断研究

Fault Diagnosis of Rolling Element Bearing Based on Empirical Wavelet Transform

中文摘要英文摘要

经验小波变换(EWT)作为一种新的自适应信号分解方法,通过在频域自适应构造带通滤波器组,构造正交小波函数,以提取具有紧支撑傅里叶频谱的调幅-调频(AM-FM)分量。本文将该方法应用到滚动轴承故障诊断中,提出了一种基于经验小波变换的滚动轴承故障诊断方法。由于滚动轴承故障信号中的低频有效成分往往受到多个轴承共振频率调制影响,轴承共振频带往往包含丰富的故障信息,依据轴承故障信号的上述特点提出经验小波变换频带范围划分准则,合理选择频带边界,完整保留共振频带。

s a new adaptive signal decomposition method, Empirical wavelet transform (EWT) can adaptively built band-pass filters in the frequency domain so as to construct the orthogonal wavelet functions and extract the AM-FM components that have a compact support in Fourier spectrum. Hereby, EWT is introduced in the fault diagnosis of rolling element bearing. The low frequency components of bearing fault signal is subjected to the effect of modulating by the multiple bearing resonance frequencies, the bearing resonance bands carry rich fault information. A frequency band division method of empirical wavelet transform is put forward, which could determine the frequency band boundaries reasonably and preserve the resonance band.

俞昆、徐明、陈龙、孙显彬、谭继文

机械运行、机械维修计算技术、计算机技术

滚动轴承故障诊断经验小波变换共振频带

rolling element bearingfault diagnosisempirical wavelet transformresonance band

俞昆,徐明,陈龙,孙显彬,谭继文.基于经验小波变换的滚动轴承故障诊断研究[EB/OL].(2017-06-14)[2025-07-17].http://www.paper.edu.cn/releasepaper/content/201706-175.点此复制

评论