|国家预印本平台
首页|Numerical radius inequalities for products and sums of semi-Hilbertian space operators

Numerical radius inequalities for products and sums of semi-Hilbertian space operators

Numerical radius inequalities for products and sums of semi-Hilbertian space operators

来源:Arxiv_logoArxiv
英文摘要

New inequalities for the $A$-numerical radius of the products and sums of operators acting on a semi-Hilbert space, i.e. a space generated by a positive semidefinite operator $A$, are established. In particular, it is proved for operators $T$ and $S,$ having $A$-adjoint, that $$ \omega_A(TS) \leq \frac{1}{2}\omega_A(ST)+\frac{1}{4}\Big(\|T\|_A\|S\|_A+\|TS\|_A\Big),$$ where $\omega_A(T)$ and $\|T\|_A$ denote the $A$-numerical radius and the $A$-operator seminorm of an operator $T$.

Pintu Bhunia、Kallol Paul、Kais Feki

数学

Pintu Bhunia,Kallol Paul,Kais Feki.Numerical radius inequalities for products and sums of semi-Hilbertian space operators[EB/OL].(2020-12-19)[2025-08-02].https://arxiv.org/abs/2012.12034.点此复制

评论