|国家预印本平台
首页|利用基于稳态视觉诱发电位的脑机接口控制功能性电刺激康复系统

利用基于稳态视觉诱发电位的脑机接口控制功能性电刺激康复系统

Using SSVEP based Brain-Computer Interface to Control Functional Electrical Stimulation Rehabilitation System

中文摘要英文摘要

本文设计了基于稳态视觉诱发电位脑机接口的功能性电刺激系统,以实现人体上肢的抓握和屈伸训练。受试者主动注视屏幕上五个以不同频率闪烁的方块中的某一个频闪方块,外界刺激经受试者的眼睛在大脑视觉皮层区出现相应的反应。对大脑枕部视觉区进行脑电(EEG)信号采集,通过提取滤波后EEG信号中的五种刺激频率及其谐波成分,并以此作为分类的特征进行模式识别。模式识别选用线性判决分析(LDA)分类器进行五类的频闪分类,分类的结果对应受试者所注视的频闪,从而明白受试者的意图控制功能性电刺激仪进行相应的康复训练。实验结果表明稳态视觉诱发脑机接口中EEG信号基频及其谐波成分分析的特征提取并用LDA分类器进行分类具有较好的在线分类效果。在此基础上结合与受试者进行交互的能量条的变化规则模型,进一步提高了系统的输出准确性。实验结果显示出受试者能够按照自己的意图准确地控制FES实现设定时序的动作,这为后续实施患者实验奠定基础。

In this paper, a functional electrical stimulation (FES) training system with steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was designed to realize movements of upper limb. The subjects are required to initiatively focuse on one of the five flicking lights with different frequencies on the computer screen, and some corresponding reactions will occur at the visual cortex of the brain. At the same time, the electroencephalogram (EEG) signal where the subject's intention is encoded is acquired. After filtering the primary flicking frequencies, the harmonic components are extracted as classification features from the EEG channels at the visual cortex region, and then linear discriminant analysis (LDA) classifier is used to decode the subject's intention corresponding to the flicking light that the subject is focusing on. Thereafter a command with user's intention is sent to trigger the FES system to perform the frequency specific training action. The experimental results showed that the feature extraction and classification methods are efficient in on-line classification. Finally an energy bar model is applied to the machine user interface to enhance the output of the system and as a feedback to the user. The results imply that the subjects can accurately control the FES training system to realize the designed action sequencies with their own intention, and this work lays a solid fundation for the future clinical experiments on paralized patients.

张定国、黄淦、姚林、朱向阳

电子技术应用自动化技术、自动化技术设备计算技术、计算机技术

脑机接口脑电稳态视觉诱发电位功能性电刺激康复系统

brain-computer interfaceEEGsteady-state visual evoked potentialfunctional electrical stimulationrehabilitation system

张定国,黄淦,姚林,朱向阳.利用基于稳态视觉诱发电位的脑机接口控制功能性电刺激康复系统[EB/OL].(2011-01-25)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201101-1209.点此复制

评论