基于BP神经网络的主动队列管理拥塞控制算法研究
he Research of AQM Based on BP Neural Network for Congestion Control
本文针对无线传感器网络中汇聚节点的重要地位和无线传感器网络拥塞的特点,通过汇聚节点瓶颈网络的线性化模型,提出了基于BP神经网络的汇聚节点队列长度的模型预测控制器,对汇聚节点的队列长度进行控制,通过广播的方式向源节点反馈队列拥塞信息,请求降低传送速率。采用网络仿真软件NS-2对本文所提出的算法与现有拥塞控制算法CODA进行比较,结果表明本文所提算法在汇聚节点队列长度稳定性,端到端延迟、事件投递率方面均有一定的优势。
ccording to wireless sensor network sink node important status and characteristics of wireless sensor network congestion This paper makes sink node bottleneck linear model and proposes a predictive controller of sink node queue length based on the BP neural network model. This controller can broadcast feedback information to source node to reduce transmitting rate when sink node queue length is over. Using NS-2 to simulating this algorithm and the existing congestion control algorithm, the results showed that our proposed algorithm is better than CODA algorithm on sink node queue length stability, end-to-end delay and delivery rate.
戴吉、汤晓蕾
通信无线通信
拥塞控制神经网络主动队列管理汇聚节点
ongestion ControlNeutral NetworkQMSink Node
戴吉,汤晓蕾.基于BP神经网络的主动队列管理拥塞控制算法研究[EB/OL].(2010-04-20)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201004-739.点此复制
评论