|国家预印本平台
首页|New Approach for Improving Pseudorandomness of Pseudorandom Sequences with Applications

New Approach for Improving Pseudorandomness of Pseudorandom Sequences with Applications

New Approach for Improving Pseudorandomness of Pseudorandom Sequences with Applications

中文摘要英文摘要

伪随机数发生器(PRNG)广泛应用于许多领域,尤其是在密码应用中。设计欠佳的PRNG生成的序列将导致其密钥较弱从而可能泄漏被隐藏的信息。基于Golomb对理想伪随机序列的假设和FIPS 140-2随机性检验准则,本文首次提出了一种改进伪随机序列伪随机性能的新方法。其次,用广义同步定理、Henon映射、logistic映射和tube射构造了一个新的8维混沌广义同步系统(8DCGSS)。然后使用8DCGSS设计了一个混沌PRNG(CPRNG)。CPRNG的密钥空间大于2^{1117}。用FIPS 140-2随机性测试规范和广义FIPS 140-2随机性测试规范分别检测了CPRNG、Matlab PRNG、RC4算法和m序列分别生成的1000条20 000比特长的密钥流的通过率,应用广义FIPS 140-2随机性测试规范分别评估了改进的密钥流流的通过率(伪随机性)。用FIPS 140-2和广义FIPS 140-2伪随机性测试规范分别评估了4个PRNG产生的1000条100 000比特长的密钥流和1000条1 000 000比特长的密钥流和改进的密钥流的通过率。结果表明,本文的方法能够显著提高四个PRNGs生成的密钥流的伪随机性。m序列伪随机数发生器生成的长度小于100 000比特的密钥流的伪随机性能不佳。<br />&nbsp;

br />Based on the Golomb&#39;s pseudorandomness &nbsp;assumptions &nbsp;on idea pseudorandom sequences &nbsp;and FIPS 140-2 pseudorandomness&nbsp;test, &nbsp;this paper first presents a new approach for improving the&nbsp;pseudorandomness of pseudorandom sequences. Second, using a&nbsp;generalized synchronization theorem, &nbsp;and three chaotic maps&nbsp;constructs one &nbsp;8-dimensional chaotic generalized synchronization&nbsp;system (8DCGSS). Then using the 8DCGSS designs a chaotic<br />pseudorandom number generator (CPRNG). The keyspace of the CPRNG is&nbsp;larger than 2^{1117}. Third, using &nbsp;FIPS 140-2 pseudorandomness&nbsp;test criterions and generalized FIPS 140-2 pseudorandomness test&nbsp;criterions measures, respectively, the pseudorandomness of the&nbsp;keystreams with length 20 000, 100 000 and 1 000 000 generated via&nbsp;the CPRNG, an Matlab PRNG, an RC4 algorithm, and an m-sequence with&nbsp;period 2^{20} - 1, and the corresponding improved keystreams by&nbsp;our approach. &nbsp;The results show that the presented approach can&nbsp;increase significantly the pseudorandomness of the keystreams&nbsp;generated by the four PRNGs. The key streams generated by the&nbsp;m-sequence do not have sound pseudorandomness &nbsp;when the lengths of&nbsp;the key streams are less than 100 000.

10.12074/202210.00008V4

计算技术、计算机技术电子技术应用通信

概率和统计提高伪随机性Golomb s假设伪随机序列混沌伪随机数发生器RC4算法m-序列FIPS 140-2检测

Probability and statisticsImproving pseudorandomnessGolomb s assumptionsPseudorandom sequencesChaotic pseudorandom number generatorRC4 algorithmm-SequenceFIPS 140-2 test.

.New Approach for Improving Pseudorandomness of Pseudorandom Sequences with Applications[EB/OL].(2023-07-04)[2025-08-11].https://chinaxiv.org/abs/202210.00008.点此复制

评论