|国家预印本平台
首页|基于模拟退火的改进群搜索优化算法

基于模拟退火的改进群搜索优化算法

n improved group search optimizer algorithm Based on Metroplis rule

中文摘要英文摘要

针对标准群搜索优化算法(GSO)易陷入局部最优以及效率较低等问题,提出基于模拟退火的改进群搜索优化算法,其主要的改进为:在搜索最优值的过程中,将模拟退火算法引入发现者的搜索模式,通过以一定的概率接受劣解,能有效跳出局部极值点,从而强化算法的全局搜索能力;将趋势预测思想加入到发现者和部分加入者中,使其不再盲目更新,提高寻优性能。通过常用的测试函数测试,不管是在低、高维情况下,都体现出了比PSO,GA,PGSO,GSO更好的收敛效果和寻优性。将该算法应用于群体动画中,为群体动画的实现提供了新的思路和方法。

ccording to the problem that the standard Group Search Optimizer algorithm(GSO) easily traps in a local optimum and has low effieicency,an improved group search optimizer algorithm with Metroplis rule which is based on GSO is presented in this paper.The major improvement is that the Metroplis rule is introduced in the searching mode of producer which is in the process of seaching optimal value.In order to strengthening the global search capability and then jumping out of local extrame point,the Metroplis rule can jump out of the local optimum by accepting a certain probalility inferior solution.Meanwhile,predictive model is accepted by the producer,which makes the producer no longer blindly update and improves the performance of optimization.A set of benchmark functions are employed to evaluate the improved algorithm.No matter in the low and high dimensional case,the optimization of this improved algorithm has better global convergence than PGSO algorithm,GSO algorithm and GA algorithm.The algorithm is applied to group animation and provides new ideas and methods for the realiztion of group animation.

郑慧杰、郑向伟、刘弘

计算技术、计算机技术

群体智能群搜索优化算法模拟退火群体动画

swarm intelligencegroup search optimizer algorithmsimulated annealing algorithmgroup animation

郑慧杰,郑向伟,刘弘.基于模拟退火的改进群搜索优化算法[EB/OL].(2011-06-21)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201106-388.点此复制

评论