|国家预印本平台
首页|贝叶斯网络故障诊断模型解耦方法的探讨

贝叶斯网络故障诊断模型解耦方法的探讨

Research of Fault Diagnosis Bayesian Networks Decoupling

中文摘要英文摘要

复杂系统贝叶斯网络故障诊断模型因节点多、耦合关系复杂,具有推理诊断效率低,诊断结果解释能力差等缺点。引进解耦思想,过对三种典型耦合贝叶斯网络:耦合节点均指向子网、子网通过节点间接耦合、"V"结构耦合,进行子网之间的解耦合,然后将故障节点推理诊断结果与未解耦的整体网络结果对比的方法,验证解耦思想的可行性,从而提高贝叶斯网络故障诊断模型的诊断效率。本文是以列车贝叶斯网络故障诊断模型这一典型复杂系统为研究基础,通过三个解耦实验,对解耦方法进行探讨,结论证明了方法的有效性。

With too may nodes and complicated coupling relationship, complex system bayesian network fault diagnosis model has low reasoning diagnosis efficiency and bad explanation ability for the diagnosis results. Using decoupling thought, through working on the three typical coupling sub-BNs (The coupling node points to sub-BNs, the indirectly coupling non-symmetrical sub-BNs, the "V"coupling sub-BNs )decoupling, and then compare the reasoning diagnosis results before and after decoupling networks, verified the feasibility of decoupling thought, so as to improve the bayesian network fault diagnosis model diagnosis efficiency. This paper actually based on the research of the fault diagnosis BN model in train, through those three decoupling experiments, to research the decoupling method. Finally, the conclusion prove the efficiency of the method.

钟文奇、张三同、魏学业

自动化技术、自动化技术设备计算技术、计算机技术

贝叶斯网络故障诊断解耦子网

Bayesian networksfault diagnosisdecouplesub-BN

钟文奇,张三同,魏学业.贝叶斯网络故障诊断模型解耦方法的探讨[EB/OL].(2012-08-24)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201208-184.点此复制

评论