Detection of stress functional responses in bacterial populations under dry soil conditions show potential microbial mechanisms to resist drought conditions
Detection of stress functional responses in bacterial populations under dry soil conditions show potential microbial mechanisms to resist drought conditions
Abstract Climate change is predicted to have a negative effect on the grasslands of the United States and will be detrimental to the economy and environment. The changing precipitation levels would also have an effect on the structural and functional potential of associated soil microbiome communities, which in turn will regulate the health of the plants during stressful conditions. In this study, we applied metagenomics analyses to capture the responses of the bacterial populations under drier soil conditions. We collected soil from two sites (dry and wet) at the Konza Long-Term Ecological Research field station in Kansas, which had characteristic features of the native prairies. Soil drying resulted in a significant shift in the bacterial population at the community level. Following that, fifteen bacterial genomes were short-listed based on the availability in the public database, higher relative abundance in dry soils than in wet, and also according to their contributions in drier soil. The potential microbial mechanisms were elucidated when an in-depth analysis of the functional genes was performed. Translation elongation factor EF-Tu, thiamine biosynthesis protein, and catalase were identified as a part of the overall stress functional responses in the bacterial population in this study. We speculate that these identified bacterial populations are important for maintaining the health of the soil under dry conditions. Genes and/or pathways found in this study provide insights into microbial mechanisms that these bacterial populations might employ to resist challenging drought conditions.
Sarkar Soumyadev、Ward Kaitlyn、Jansson Janet K.、Lee Sonny T.M.
Division of Biology, Kansas State UniversityDivision of Biology, Kansas State UniversityEarth and Biological Sciences Directorate, Pacific Northwest National LaboratoryDivision of Biology, Kansas State University
环境科学技术现状环境生物学微生物学
metagenomedry soildroughtsoil microbiome
Sarkar Soumyadev,Ward Kaitlyn,Jansson Janet K.,Lee Sonny T.M..Detection of stress functional responses in bacterial populations under dry soil conditions show potential microbial mechanisms to resist drought conditions[EB/OL].(2025-03-28)[2025-05-24].https://www.biorxiv.org/content/10.1101/2020.09.30.320879.点此复制
评论