LIBSVM多分类模板数据存储结构优化
Optimization For Multi-Classification Template Data Storage Structure of LIBSVM
SVM是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,它最初是为二分类问题设计的,当处理多类问题时,需要构造合适的多类分类器。由台湾大学林智仁(Lin Chih-Jen)等开发设计的LIBSVM采用一对一法处理多类分类问题,构造k(k-1)/2个二分类SVM,采用投票的方式进行多类分类。由于单个二分类SVM仅使用了相应类别的部分支撑向量,因此单个二分类SVM中大部分支撑向量的系数为0。本文在深入研究LIBSVM模型数据存储结构的基础上,提出了一种基于稀疏存储的LIBSVM模型数据存储结构以改进原始LIBSVM模型数据存储结构的缺陷。
SVM is a new pattern recognition method developed in recent years on the basis of statistical learning theory, which was originally designed as a binary classification problem, when dealing with multi-classification problems, we need to construct an appropriate multi-class classifier. LIBSVM developed and designed by Lin Chih-Jen and others of National Taiwan University uses the one against one method which will construct k(k-1)/2 binary classifiers and ballot method to handle the multi-classification problems. Since a single binary SVM only uses part of the corresponding category support vector, most of the support vector coefficients are zero. After further study of LIBSVM model data storage structure, we propose a storage structure of LIBSVM model data with sparse storage to improve the defects of original storage structure.
潘玉民、庄伯金
计算技术、计算机技术
支撑向量机一对一分类稀疏存储LIBSVM多分类
Support Vector Machine (SVM)One Against One (OAO) classificationsparse storageLIBSVMmulti-classification
潘玉民,庄伯金.LIBSVM多分类模板数据存储结构优化[EB/OL].(2013-12-23)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201312-716.点此复制
评论