|国家预印本平台
首页|Local and global well-posedness in $L^{2}(\mathbb R^{n})$ for the inhomogeneous nonlinear Schr\"{o}dinger equation

Local and global well-posedness in $L^{2}(\mathbb R^{n})$ for the inhomogeneous nonlinear Schr\"{o}dinger equation

Local and global well-posedness in $L^{2}(\mathbb R^{n})$ for the inhomogeneous nonlinear Schr\"{o}dinger equation

来源:Arxiv_logoArxiv
英文摘要

This paper investigates the local and global well-posedness for the inhomogeneous nonlinear Schr\"{o}dinger (INLS) equation $iu_{t} +\Delta u=\lambda \left|x\right|^{-b} \left|u\right|^{\sigma } u, u(0)=u_{0} \in L^{2}(\mathbb R^{n})$, where $\lambda \in \mathbb C$, $0<b<\min \left\{2,{\rm \; }n\right\}$ and $0<\sigma \le \frac{4-2b}{n} $. We prove the local well-posedness and small data global well-posedness of the INLS equation in the mass-critical case $\sigma =\frac{4-2b}{n} $, which have remained open until now. We also obtain some local well-posedness results in the mass-subcritical case $\sigma <\frac{4-2b}{n} $. In order to obtain the results above, we establish the Strichartz estimates in Lorentz spaces and use the contraction mapping principle based on Strichartz estimates.

JinMyong Kim、JinMyong An

数学物理学

JinMyong Kim,JinMyong An.Local and global well-posedness in $L^{2}(\mathbb R^{n})$ for the inhomogeneous nonlinear Schr\"{o}dinger equation[EB/OL].(2021-07-01)[2025-08-07].https://arxiv.org/abs/2107.00790.点此复制

评论