|国家预印本平台
首页|循环神经网络的可视化解释

循环神经网络的可视化解释

Visualization of Recurrent Neural Network

中文摘要英文摘要

循环神经网络已成功应用于各种自然语言处理任务,并且比常规方法取得了更好的结果。但是,由于缺乏对其有效性背后机制的了解,因而限制了其体系结构的进一步改进。在本文中,为了清晰的可视化解释RNN分类模型,我们将模型进行改进,通过在每一个时间步都输出中间的预测结果,将预测结果随时间步的变化进行可视化,并且对输入进行重要性评估。并且在反向传播机制中,通过每一步的输出结果进行反向传播,能更好的解释输入的重要性。

Recurrent neural networks have been successfully applied to various natural language processing tasks, and have achieved better results than conventional methods. However, the lack of understanding of the mechanism behind its effectiveness limits the further improvement of its architecture. In this article, in order to clearly explain the RNN classification model with visualization method, we improve the model. By outputting the intermediate prediction results at each time step, we visualize the changes in the prediction results over time and evaluate the importance of the input. And in the backpropagation mechanism, backpropagation through the output results of each step can better explain the importance of the input.

张晓航、谷芳雪

计算技术、计算机技术

循环神经网络可视化分析模型解释特征重要性

Recurrent neural networksvisual analysismodel interpretationfeature importance

张晓航,谷芳雪.循环神经网络的可视化解释[EB/OL].(2021-11-16)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202111-38.点此复制

评论