|国家预印本平台
首页|Structural adaptation of oxygen tolerance in 4-hydroxybutyrl-CoA dehydratase, a key enzyme of archaeal carbon fixation

Structural adaptation of oxygen tolerance in 4-hydroxybutyrl-CoA dehydratase, a key enzyme of archaeal carbon fixation

Structural adaptation of oxygen tolerance in 4-hydroxybutyrl-CoA dehydratase, a key enzyme of archaeal carbon fixation

来源:bioRxiv_logobioRxiv
英文摘要

Abstract Autotrophic microorganisms that convert inorganic carbon into organic matter were key players in the evolution of life on early Earth. As the early atmosphere became oxygenated, these microorganisms needed protection from oxygen, which was especially important for those organisms that relied on enzymes with oxygen-sensitive metal clusters (e.g., Fe-S). Here we investigated how the key enzyme of the 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle for CO2-fixation, 4-hydroxybutyryl-CoA dehydratase (4HBD), adapted from anoxic to oxic conditions. 4HBD is found in both anaerobic bacteria and aerobic ammonia-oxidizing archaea (AOA). The oxygen-sensitive bacterial 4HBD and oxygen-tolerant archaeal 4HBD share 59 % amino acid identity. To examine the structural basis of oxygen tolerance in archaeal 4HBD, we determined the atomic resolution structure of the enzyme. Two tunnels providing access to the canonical 4Fe-4S cluster in oxygen-sensitive bacterial 4HBD were closed with four conserved mutations found in all aerobic AOA and other archaea. Further biochemical experiments support our findings that restricting access to the active site is key to oxygen tolerance, explaining how active site evolution drove a major evolutionary transition.

V?hringer-Martinez Esteban、Schwander Thomas、Erb Tobias J.、Wakatsuki Soichi、Saez David A.、Murillo-L¨?pez Juliana A.、Francis Christopher A.、Tolar Bradley B.、Doukov Tzanko、Rabanal-Le¨?n Walter A.、Pal Akshaye、Yoshikuni Yasuo、Petriceks Aldis、DeMirci Hasan

Departamento de F¨asico-Qu¨amica, Facultad de Ciencias Qu¨amicas, Universidad de Concepci¨?nMax Planck Institute for Terrestrial MicrobiologyMax Planck Institute for Terrestrial MicrobiologyBiosciences Division, SLAC National Accelerator Laboratory||Department of Structural Biology, School of Medicine, Stanford UniversityDepartamento de F¨asico-Qu¨amica, Facultad de Ciencias Qu¨amicas, Universidad de Concepci¨?nDepartamento de F¨asico-Qu¨amica, Facultad de Ciencias Qu¨amicas, Universidad de Concepci¨?nDepartment of Earth System Science, Stanford UniversityDepartment of Earth System Science, Stanford UniversityStructural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLACDepartamento de Qu¨amica Anal¨atica e Inorg¨¢nica, Facultad de Ciencias Qu¨amicas, Universidad de Concepci¨?nBiosciences Division, SLAC National Accelerator LaboratoryDOE Joint Genome Institute, Lawrence Berkeley National LaboratoryBiosciences Division, SLAC National Accelerator LaboratoryBiosciences Division, SLAC National Accelerator Laboratory||Department of Molecular Biology and Genetics, Koc University||Stanford PULSE Institute, SLAC National Accelerator Laboratory

10.1101/2020.02.05.935528

生物化学分子生物学微生物学

oxygen tolerance4-Hydroxybutyryl-CoAiron-sulfur clusterammonia-oxidizing archaeaX-ray crystallographyflavin adenine dinucleotide (FAD)bioenergyC-cycling3-hydroxypropionate/4-hydroxybutyrate

V?hringer-Martinez Esteban,Schwander Thomas,Erb Tobias J.,Wakatsuki Soichi,Saez David A.,Murillo-L¨?pez Juliana A.,Francis Christopher A.,Tolar Bradley B.,Doukov Tzanko,Rabanal-Le¨?n Walter A.,Pal Akshaye,Yoshikuni Yasuo,Petriceks Aldis,DeMirci Hasan.Structural adaptation of oxygen tolerance in 4-hydroxybutyrl-CoA dehydratase, a key enzyme of archaeal carbon fixation[EB/OL].(2025-03-28)[2025-06-21].https://www.biorxiv.org/content/10.1101/2020.02.05.935528.点此复制

评论