基于符号计算的光纤中广义变系数高阶薛定谔方程的解析暗孤子解
nalytic Dark Soliton Solutions for a Generalized Variable-Coefficient Higher-Order Nonlinear Schr鰀inger Equation in Optical Fibers Using Symbolic Computation
基于符号计算, 本文解析研究了可用于描述飞秒脉冲传输的带有高阶与增益损耗项的广义变系数高阶薛定谔方程. 在系数约束条件下, 本文首先将此广义变系数方程转化为完全可积的常系数高阶薛定谔方程. 进一步,借助于此变换,本文通过双线性方法求得了广义变系数高阶薛定谔方程的单暗孤子解跟双暗孤子解.
In this paper, a generalized variable-coefficient nonlinear Schr鰀inger equation with higher-order and gain/loss effects which can be used to describe the femtosecond pulse propagation is analytically investigated via symbolic computation. Under sets of coefficient constraints, such an equation is transformed into a completely integrable constant-coefficient higher-order nonlinear Schr鰀inger equation. Furthermore, through the transformation, the dark one- and two-soliton solutions for the generalized variable-coefficient higher-order nonlinear Schr鰀inger equation are derived by means of the bilinear method.
Tian Bo 、Zhang ChunYi 、Sun ZhiYuan 、孟祥花
物理学
暗孤子广义变系数高阶薛定谔方程双线性方法符号计算
ark SolitonsGeneralized Variable-Coefficient Higher-Order Nonlinear Schr鰀inger EquationBilinear MethodSymbolic Computation
Tian Bo ,Zhang ChunYi ,Sun ZhiYuan ,孟祥花.基于符号计算的光纤中广义变系数高阶薛定谔方程的解析暗孤子解[EB/OL].(2008-10-20)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200810-461.点此复制
评论