基于子视图框架的语句级情感分析
Sentence-level Sentiment Analysis Based on Sub-view Framework
本文提出了一种改进的语句级情感分析方法。情感分析一般被认为需要深入理解句子结构(如词序、非局部依赖等)。为了在不进行句子分析的前提下解决该问题,本文提出了一种新方法,把给定句子分成一系列子序列或子视图,然后通过对每个子视图的情感分类结果合并得到整个句子的情感极性。文章使用两种特定的方法应用于该框架:层叠最大熵模型和隐条件随机域(HCRFs)模型,并使用上下文信息作为学习特性。实验采用两个标准数据集,分别是句子主题分类数据集和句子极性分类数据集。实验结果显示,该方法的效果明显优于当前的主流方法。
his paper presents a method for improving the performance of sentence-level sentiment analysis. Sentiment analysis is thought to require a deep understanding of the sentence structure (e.g., word order and non-local dependency). To attack this problem without the sentence parsing, we propose an approach whereby a given sentence is decomposed into a series of sub-sequences or sub-view representations. Sentence-level polarity is then determined by classifying within sub-views and fusing the obtained sub-view polarities. Two specific methods are instantiated: stacking-based maximum entropy model and hidden conditional random fields (HCRFs) based on contextual features. Extensive evaluations were carried out on two benchmark dataset, one is for sentence subjectivity classification and the other is for sentence polarity detection. Experimental results show that the performance of our proposed method is comparable to the state-of-the-art approaches.
刘晓华、邢鑫岩、张宪超
计算技术、计算机技术
Natural Language ProcessingSentiment AnalysisSequence Label
Natural Language ProcessingSentiment AnalysisSequence Model
刘晓华,邢鑫岩,张宪超.基于子视图框架的语句级情感分析[EB/OL].(2010-10-25)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201010-448.点此复制
评论