Geometric representations of the braid group on a nonorientable surface
Geometric representations of the braid group on a nonorientable surface
We classify homomorphisms from the braid group on $n$ strands to the pure mapping class group of a nonoriantable surface of genus $g$. For $n\ge 14$ and $g\le 2\lfloor{n/2}\rfloor+1$ every such homomorphism is either cyclic, or it maps standard generators of the braid group to either distinct Dehn twists, or distinct crosscap transpositions, possibly multiplied by the same element of the centralizer of the image.
Michał Stukow、Błażej Szepietowski
数学
Michał Stukow,Błażej Szepietowski.Geometric representations of the braid group on a nonorientable surface[EB/OL].(2025-07-16)[2025-08-10].https://arxiv.org/abs/2408.04707.点此复制
评论