|国家预印本平台
首页|基于LSTM的复杂炼化过程报警预测

基于LSTM的复杂炼化过程报警预测

larm prediction of complex refining process based on deep learning

中文摘要英文摘要

近年来,随着我国炼化行业与信息技术的深入融合与飞速发展,复杂炼化系统所产生的数据呈现爆炸性增长。报警系统是一类用于向操作者传递设备异常状态信息的监控系统;一旦设计不合理,设备在异常状态下可能会产生大量的过程报警甚至报警饱和的现象,严重影响操作者的信息处理能力,从而增加各种工业事故的发生概率。报警信息能够对复杂炼化过程给予正向的指导,因此如何从海量的报警日志中挖掘有价值的信息非常重要。深度学习是一种能够自动地从数据中学习和提取特征的方法,不需要人工构建复杂而精确的物理和数学模型,已在数据预测和分类领域得到广泛应用和关注。

In recent years, with the rapid development of the chemical industry and information combination, the data produced in the chemical refining system presents explosive growth. Alarm system is a kind of transmitting equipment abnormal state information to the operator of the system, but if the design is not reasonable, the equipment under abnormal state process may produce a large number of alarm and alarm saturation phenomenon, the serious influence the operator's information processing ability, thus increasing the probability of all kinds of industrial accidents. Therefore, how to mine useful information from the massive alarm logs is very important, and use the mined information to give positive guidance to the complex refining process. Deep learning is a method that can automatically learn and extract features from data. It does not require manual construction of complex and accurate physical and mathematical models, so it has been widely applied and paid attention to in the field of data prediction and classification.

10.12074/202401.00075V1

石油天然气加工自动化技术、自动化技术设备计算技术、计算机技术

炼化过程报警管理自然语言处理深度学习

Refining and chemical processlarm managementNatural language processingeep learning

.基于LSTM的复杂炼化过程报警预测[EB/OL].(2024-01-07)[2025-08-02].https://chinaxiv.org/abs/202401.00075.点此复制

评论