|国家预印本平台
首页|基于三元组的跨模态深度哈希算法

基于三元组的跨模态深度哈希算法

eep Triplet based Cross Model Hashing

中文摘要英文摘要

跨模态的深度哈希算法可以跨越文本、图像之间的语义鸿沟,使得图片和文字能够相互检索。为了提高现有跨模态哈希算法检索的准确性,本文提出了一个基于三元组的跨模态哈希算法DTCMH(Deep Triplet based Cross Model Hashing),该算法采用生成三元组的训练方式,其损失函数包括减少量化误差的正则项、基于三元组的排序损失以及Softmax分类器中的分类误差损失,更好的学习了数据之间的排序关系以及数据的高级语义特征,最终收到了良好的模型网络训练效果。

ross-modal deep hash algorithm can cross the semantic gap between texts and images so that images and texts can be retrieved from each other. In order to improve the retrieval accuracy of existing cross-modal hash algorithms, this paper proposes a triple-based cross-modal hash model (DTCMH), which loss function takes into account the regular items that reduce the quantization error , the ranking loss based on triplets and the classification error loss in Softmax classifier. This model learns the ordering relationship and the semantic features of data. DTCMH performance is better than the state-of-the-art cross model algorithm.

程祥、闭蓉

计算技术、计算机技术

计算机软件与理论深度哈希跨模态三元组

omputer software and theoryDeep HashingCross ModelTriplet

程祥,闭蓉.基于三元组的跨模态深度哈希算法[EB/OL].(2017-12-04)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201712-28.点此复制

评论