|国家预印本平台
首页|基于大数据挖掘的金融产品订购预测

基于大数据挖掘的金融产品订购预测

Prediction of financial product ordering based on big data mining

中文摘要英文摘要

本文将包含用户特征及是否订购金融产品数据的数据集分为训练集和验证集,运用数据可视化展示用户画像,并基于随机森林算法、xgboost 算法、 逻辑回归算法、朴素贝叶斯算法和梯度提升树算法建立了判断用户是否订购的预测模型。通过模型效果对比,确定了最佳的预测模型。结果表明,最终建立的模型具有较高的准确性,能够有效地帮助公司经理或决策者去预测用户是否选择订购产品。

onsumption is an important and primary factor in stimulating economic production and the most important link in production and sales. For financial product sellers, it is important to identify the user population and analyze the user characteristics of the ordered products. In this paper, the data set containing user characteristics and whether to order financial products is divided into training set and verification set. The user profile is displayed by data visualization. Based on random forest algorithm, xgboost algorithm, logic regression algorithm, naive Bayes algorithm and gradient lifting tree algorithm, a prediction model is established to determine whether users order. The best prediction model is determined through the comparison of model effects. The results show that the final model has high accuracy and can effectively help company managers or decision-makers to predict whether users choose to order products.

缪一诺、诸葛斌

财政、金融计算技术、计算机技术

数据挖掘模型预测精准营销

data miningmodel predictionPrecision marketing

缪一诺,诸葛斌.基于大数据挖掘的金融产品订购预测[EB/OL].(2022-12-12)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/202212-46.点此复制

评论