|国家预印本平台
首页|基于分而治之的行为识别

基于分而治之的行为识别

ction Recognition Based on Divide-and-conquer

中文摘要英文摘要

近来深度卷积神经网络在行为识别领域取得了很大的突破。因为连续的视频帧存在大量的冗余信息,相比密集采样,稀疏采样神经网络也能达到较好的效果。由于稀疏采样的获取视频信息的局限性,这篇文章主要讨论了如何进一步提高基于稀疏采样模型的学习能力。我们提出了一种基于分而治之的模型,它利用阈值α来决定是否行为数据需要稀疏采样或者局部密集采样来学习行为。最后在UCF-101数据集和HMDB51数据集上我们模型获得了较好的成果,分别达到了95.3%和72.4%的准确率。

Recently, deep convolutional neural networks have made great breakthroughs in the field of action recognition. Since sequential video frames have a lot of redundant information, compared with dense sampling, sparse sampling network can also achieve good results. Due to sparse sampling\'s limitation of access to information, this paper mainly discusses how to further improve the learning ability of the model based on sparse sampling. We proposed a model based on divide-and-conquer, which use a threshold α to determine whether action data require sparse sampling or dense local sampling for learning. Finally, our approach obtains the state-the-of-art performance on the datasets of HMDB51 (72.4%) and UCF101 (95.3%).

谭光华、苗瑞

计算技术、计算机技术

行为识别分而治之稀疏采样密集采样

ction recognitionDivide-and-conquerSparse samplingDense sampling

谭光华,苗瑞.基于分而治之的行为识别[EB/OL].(2019-04-25)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201904-291.点此复制

评论