|国家预印本平台
首页|基于趋势分解算法的深度学习选股方法研究

基于趋势分解算法的深度学习选股方法研究

Research on Deep Learning Stock Selection Method Based on Trend Decomposition Algorithm

中文摘要英文摘要

部分研究使用机器学习和深度学习模型时未充分挖掘影响股票价格趋势的其他指标特征,导致了较大的预测误差且预测结果很难直接应用于获得超额收益。因此,有必要针对股票特征建立高效的深度学习模型,并充分挖掘影响股票价格趋势的因子以提高预测精准度。本文针对传统股票趋势预测的不足,构建了基于天牛须优化的LSTM-BP神经网络进行股票价格预测,构建了基于多角度相关性分析的基于粒子群优化的PCA-BP神经网络模型进行趋势预测。综合考虑价格预测和趋势预测两个维度,构建深度量化选股方法。并在此过程中提出了一种股票趋势分解判定算法对股票数据进行识别和分类标记,提升了数据利用率,构建新的数据集并使用基于粒子群优化算法进行参数调整和优化。策略回测结果结果显示,相较于其他深度学习策略和基准策略,本文提出的选股方法和选股策略在胜率和收益率方面均有大幅提升。表明该模型具有较好的预测能力和应用潜力,可为股票投资提供有效的决策支持。

Some studies using machine learning and deep learning models did not fully explore other indicator features that affect stock price trends, resulting in significant prediction errors and difficulty in directly applying the prediction results to obtain excess returns. Therefore, it is necessary to establish an efficient deep learning model based on stock characteristics and fully explore the factors that affect stock price trends to improve prediction accuracy.In view of the shortcomings of traditional stock trend prediction, this paper constructs LSTM-BP neural network based on Tianniuxu optimization for stock price prediction, and constructs PCA-BP neural network model based on particle swarm optimization based on multi angle correlation analysis for trend prediction. Taking into account both price prediction and trend prediction dimensions, construct a deep quantitative stock selection method. In this process, a stock trend decomposition judgment algorithm is proposed to identify and classify the stock data, improve the data utilization, build a new data set, and use the particle swarm optimization to adjust and optimize the parameters.The results of strategy backtesting show that compared to other deep learning strategies and benchmark strategies, the stock selection method and strategy proposed in this article have significantly improved in terms of victory and return. This indicates that the model has good predictive ability and application potential, and can provide effective decision support for stock investment.

张宏建、武承慧

财政、金融计算技术、计算机技术自动化技术、自动化技术设备

深度学习趋势分解参数优化选股方法量化策略

rend decompositionDeep learningParameter optimizationStock selection methodsQuantitative strategy

张宏建,武承慧.基于趋势分解算法的深度学习选股方法研究[EB/OL].(2023-06-27)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202306-88.点此复制

评论