跨领域应用下的注意力机制研究综述
Review of Attention Mechanisms in Cross domain Applications
近年来,注意力机制(Attention Mechanism)在深度学习的各个领域得到了广泛应用,它通过引入注意力权重来增强模型对相关信息的关注度,从而强化关键信息并减弱无用信息,改进了传统深度学习方法存在的一些缺陷,并提高了深度学习算法的效率。本文从自然语言处理、计算机视觉以及数据预测等领域综述了注意力机制在这些不同领域中的应用和相关研究,详细介绍了注意力机制的历史发展、结构以及应用场景,并对目前的研究现状进行深入分析,并探讨了注意力机制未来可能的发展方向。
In recent years, Attention Mechanism has been widely applied in various fields of deep learning. It enhances the model\'s attention to relevant information by introducing attention weights, thereby strengthening key information and weakening useless information. This improves some of the shortcomings of traditional deep learning methods and improves the efficiency of deep learning algorithms. This article provides an overview of the applications and related research of attention mechanisms in different fields such as natural language processing, computer vision, and data prediction. It provides a detailed introduction to the historical development, structure, and application scenarios of attention mechanisms, and conducts a thorough analysis of the current research status. It also explores possible future development directions of attention mechanisms.
蒲秋梅、叶芬
计算技术、计算机技术
注意力机制自然语言处理深度学习计算机视觉
ttention mechanismNatural language processingDeep learningComputer vision
蒲秋梅,叶芬.跨领域应用下的注意力机制研究综述[EB/OL].(2023-08-31)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202308-46.点此复制
评论