|国家预印本平台
首页|求解一类不连续的Sturm-Liouville问题

求解一类不连续的Sturm-Liouville问题

Solving a class of discontinuous Sturm-Liouville problems

中文摘要英文摘要

本文研究了一类边界条件中有谱参数的不连续的Sturm-Liouville 问题. 首先在 Hilbert 空间中定义了一个自共轭的线性算子A, 使得该类 Sturm-Liouville 问题的特征值与算子A的特征值相一致. 进一步证明了算子A是自共轭的, 且这类 Sturm-Liouville 问题特征值是解析单的. 最后展示了一个具体问题的特征值以及特征函数的逼近解.

his paper investigate a class of discontinuous Sturm-Liouville problems with eigenparameter dependent boundary conditions. A self-adjoint linear operator $A$ is defined in a suitable Hilbert space such that the eigenvalues of such a problem coincide with those of $A$. We prove that the eigenvalues of the problem are analytically simple. Based on these, we demonstrate some approximate solutions of eigenvalues and eigenfunctions for a given problem.

孙炯、王桂霞

数学

不连续的 Sturm-Liouville 问题谱参数依赖特征值解析单逼近解.

discontinuous Sturm-Liouville problemseigenparameter dependenteigenvalueanalytically simpleapproximate solutions.

孙炯,王桂霞.求解一类不连续的Sturm-Liouville问题[EB/OL].(2007-12-27)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/200712-761.点此复制

评论