|国家预印本平台
首页|Multiple normalized solutions to a system of nonlinear Schr\"{o}dinger equations

Multiple normalized solutions to a system of nonlinear Schr\"{o}dinger equations

Multiple normalized solutions to a system of nonlinear Schr\"{o}dinger equations

来源:Arxiv_logoArxiv
英文摘要

We find a normalized solution $u=(u_1,\ldots,u_K)$ to the system of $K$ coupled nonlinear Schr\"odinger equations \begin{equation*} \left\{ \begin{array}{l} -\Delta u_i+ \lambda_i u_i = \sum_{j=1}^K\beta_{i,j}u_i|u_i|^{p/2-2}|u_j|^{p/2} \quad \mathrm{in} \, \mathbb{R}^3,\newline u_i \in H^1_{rad}(\mathbb{R}^3),\newline \int_{\mathbb{R}^3} |u_i|^2 \, dx = \rho_i^2 \quad \text{for }i=1,\ldots, K, \end{array} \right. \end{equation*} where $\rho=(\rho_1,\ldots,\rho_K)\in(0,\infty)^K$ is prescribed, $(\lambda,u) \in \mathbb{R}^K\times H^1(\mathbb{R}^3)^K$ are the unknown and $4\leq p<6$. In the case of two equations we show the existence of multiple solutions provided that the coupling is sufficiently large. We also show that for negative coupling there are no ground state solutions. The main novelty in our approach is that we use the Cwikel-Lieb-Rozenblum theorem in order to estimate the Morse index of a solution as well as a Liouville-type result in an exterior domain.

Jaros?aw Mederski、Andrzej Szulkin

数学物理学

Jaros?aw Mederski,Andrzej Szulkin.Multiple normalized solutions to a system of nonlinear Schr\"{o}dinger equations[EB/OL].(2024-03-25)[2025-08-02].https://arxiv.org/abs/2403.16987.点此复制

评论