基于灰色粒子群神经网络的期货价格预测
he futures price forecast based on grey PSO
针对目前在对中国期货市场进行价格预测时采用BP神经网络存在的问题,本文从网络输入和网络参数两个方面对BP网络模型进行优化。首先用灰色关联度分析法进行输入变量的筛选,找出影响输出变量的重要因素作为网络输入,然后采用改进的粒子群算法对网络参数进行优化,将经过选择优化后建立的BP神经网络模型用于期货价格预测。仿真结果表明,经过优化后的BP神经网络模型在运行速度和预测精度方面明显优于单纯的BP神经网络模型。
here were existed some problems in the price forecast by BP neural network in light of Chinese futures’ market.This paper optimize the model of BP neural network from the input and parameters of network. First in order to identify important factor in the network’s input, use grey correlation analysis to filtrate input variables. Then the particle swarm optimization algorithm was used to optimize the parameters of BP neural network, after the network was optimized then used the model to forecast futures price. The simulation results showed that optimized BP neural network model in the speed and accuracy of forecasts is superior to simple BP neural network model.
贾兆立、覃丽萍、王海军、白玫、李聂
财政、金融自动化技术、自动化技术设备计算技术、计算机技术
期货灰色关联分析粒子群算法BP神经网络
futuresgrey correlation analysisparticle swarm optimization algorithmsBP neural networks
贾兆立,覃丽萍,王海军,白玫,李聂.基于灰色粒子群神经网络的期货价格预测[EB/OL].(2008-07-09)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/200807-204.点此复制
评论