基于网络预测与用户偏好的服务推荐
service recommendation based on network prediction and user preferences
随着近年来网络上的Web服务越来越多,服务推荐的难度逐渐增加。本文针对网络中服务随时间的变化以及用户的服务调用历史对提出了一种结合网络预测与协同过滤的推荐方法。首先构建了网络模型将服务预测问题转换为网络连接预测,并提出一种秩聚合算法来解决连接预测问题,接着基于用户内容与调用历史设计了协同过滤算法,最后通过在真实数据上的实验证明了本算法的有效性。
With the increasing number of Web services on the Internet in recent years, the difficulty of service recommendation has gradually increased. This paper proposes a recommended method combining network prediction and collaborative filtering for the changes of services in the network over time and the history of service invocation of users. Firstly, the network model is constructed to transform the service prediction problem into network connection prediction. A rank aggregation algorithm is proposed to solve the connection prediction problem. Then the collaborative filtering algorithm is designed based on the user content and the call history. Finally, the experimental proof on the real data is proved. The effectiveness of this algorithm.
张雷、宋望
计算技术、计算机技术通信无线通信
服务推荐协同过滤网络预测
Service recommendationCollaborative filteringNetwork prediction
张雷,宋望.基于网络预测与用户偏好的服务推荐[EB/OL].(2019-05-21)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201905-212.点此复制
评论