基于室内可见光通信系统的一种高斯核辅助的深度神经网络信道均衡方案
GKI-DNN Channel Equalization based on indoor Visible Light Communication
本文提出了一种室内可见光ACO-OFDM系统中利用高斯核辅助的深度神经网络对信道进行均衡的GKI-DNN(Gaussian kerne Assisted-Deep Neural Network)方案。该方案利用深度学习方法隐式估计信道状态信息,使用基于信道统计的仿真生成数据离线训练网络模型,然后直接将模型用于恢复在线传输的数据。并且为了加快网络训练的速度,提高系统误码性能,在网络的输入层和隐藏层之间加入高斯核函数改进。仿真研究表明,该方案使网络迭代次数缩减了44.44%;使用的GKI-DNN网络经调试后在信道相位偏转和幅度失真上有明显的改善,接收信号星座图集中;当每帧使用64个导频时,训练形成的GKI-DNN模型误码性能对比传统的最小二乘均衡提高了10dB增益,对比最小均方误差均衡提高了5dB增益,误码性能明显改善。
In this paper, we propose a GKI-DNN (Gaussian Kerne Improved-Deep Neural Network) scheme for channel equalization in indoor visible light ACO-OFDM system. The scheme use the method of deep learning implicitly estimate the channel state information (CSI), use the simulation data generated by channel statistics to offline train network model, the model is directly used to recover the online transmit data, in order to accelerate the speed of the network training, improve the system ber performance, put a gaussian kernel function layer between the network\'s input layer and hidden layer. The simulation results show it makes the network number of iterations shrank by 44.44%. After parameters debugging, GKI-DNN network improved the channel phase deflection and amplitude distortion, constellation diagram of receiving signals are concentrated. When each frame using the 64 pilot, training network model\'s error performance contrast to the traditional LS equalizer increased 10 db, Compared with MMSE equalization, the bit error performance is improved 5dB, The bit error performance is obviously improved.
曹璐、张君毅、李雨宓
通信光电子技术无线通信
可见光通信深度学习高斯核函数信道均衡
Visible light communicationDeep learningGaussian kernelhannel equalization
曹璐,张君毅,李雨宓.基于室内可见光通信系统的一种高斯核辅助的深度神经网络信道均衡方案[EB/OL].(2022-03-23)[2025-05-26].http://www.paper.edu.cn/releasepaper/content/202203-339.点此复制
评论