基于TLD的目标追踪算法
arget Tracking Algorithm Based on TLD
视觉跟踪作为计算机视觉的重要研究方向吸引了越来越多的研究者。目前大部分的研究都关注于目标的尺度以及跟踪的准确率问题,未考虑目标消失或者完全被遮挡的问题。因此本文提出一种基于Mean Shift的TLD跟踪算法。该方法并不仅仅着重于跟踪算法,而是将跟踪算法和检测算法结合起来,通过一定的学习机制,使得目标消失时可以利用检测的结果重新锁定目标,增加跟踪的鲁棒性。实验表明,相比原始TLD算法,该算法能有效减少跟丢的情况,取得了良好的跟踪效果。
s an important research direction of computer vision, visual tracking becomes attractive to more and more researchers. Currently, most of the studies focus on the scale of the target or tracking accuracy, without considering the problem such as the target disappeares or be completely obscured. This paper proposes a TLD tracking algorithm based on Mean Shift. This method not only focuses on the tracking algorithm, but also combines the tracking algorithm and detection algorithm. With the help of the learning algorithm, the tracking block and detection block can correct the error of each other. The experiments show the algorithm could effectively reduce tracking failure and get better tracking performance compared with the original TLD algorithm.
杨秀坤、张尚迪
计算技术、计算机技术
视觉跟踪颜色特征Mean Shift算法LD算法
omputer VisionVisual TrackingMean ShiftLD
杨秀坤,张尚迪.基于TLD的目标追踪算法[EB/OL].(2013-03-06)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201303-181.点此复制
评论