|国家预印本平台
首页|混凝土热学参数最优选取方法研究

混凝土热学参数最优选取方法研究

Study on selection method of concrete thermal parameters

中文摘要英文摘要

现实施工中由于人为、自然等因素的干扰,这些随机因素也会导致计算参数的不稳定性,因此必需综合考虑随机因素影响下的概率统计最优的参数取值。根据反分析情况,统计出各参数概率分布,并通过神经网络训练出在各参数在其共同影响下与计算结果的非线性映射关系,将各监测值作为输入神经元,反算出每个参数的值,由此可以计算出每个参数在考虑参数间交互作用影响情况下的取值波动范围。然后按一定的变化率改变主参数(自变量),根据交互作用系数计算其他影响因素(因变量)。在各参数概率分布型的基础上,就可以计算出每次调整参数所对应的各参数概率密度值,对比每次调整的情况便可确定出最理想的参数组合。通过实例验证了参数组合最优选取后,数值计算结果与监测误差减小。

ue to human and natural factors interference, it will lead to instability of calculate parameters in real construction. Therefore, it is necessary to take the parameters optimization value based on probability statistic into account under the influence of random factors. Figure out each parameter probability distribution based on back analysis data, and train the nonlinear relationship between parameters and result under the influence of various parameters interaction. Consider field monitoring value as the input neurons, calculate the value of each parameter, get the value range for each parameter considering their interaction. Then, change the main parameters by a certain rate, calculate other parameters on the basis of interaction coefficients. So that, parameters joint probability can be got for each parameters adjustment case according to each parameter probability distribution, and the parameters to be optimized can be determined by constrasting each parameters joint probability case. Example illustrates that, the difference between numerical calculate value and field monitoring value decreases by adopting the parameters optimization method.

段亚辉、吴家冠

水工材料工程基础科学建筑结构

概率统计温度场BP神经网络敏感度

probability statisticthermal fieldBP neural networksensitivity

段亚辉,吴家冠.混凝土热学参数最优选取方法研究[EB/OL].(2011-11-25)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/201111-466.点此复制

评论