电力通信网络中QoS多播路由优化改进量子进化算法
dvanced Quantum Evolutionary Algorithm for QoS Multicast Routing optimization in Electric Power Communication Network
本论文研究了电力通信系统的要求,并对电力系统中的流量进行了分类。为了满足电力通信网络中组播流量对带宽、延迟、丢包等的要求,提出了一种用于QoS组播路由优化的高级量子进化算法(AQEA),这种方法结合了量子进化算法和最小生成树算法。首先,个体的当前位置由量子位的概率振幅表示。在量子个体上实施量子交叉以保留更好的基因段。然后,更新量子门并且根据量子位的相位实现搜索区域的自适应调整。通过设计旋转角度的动态调整机制来更新个体信息素,这可以保证群体多样性强并且快速找出满足所有约束的可行解,克服了传统算法中局部优化的局限性。最后,斯坦纳最小树是用OMST(优化最小生成树)算法生成的,这确保了解决方案在精度和速度上的性能更好。仿真结果表明:AQEA与传统的蚁群算法和量子进化算法相比,具有更好的优化质量和效率;AQEA获得的组播树的成本和收敛时间优于其他进化算法,且随着节点增加这种趋势将更加明显。
his thesis studies the requirements of electric power communication system, and classifies traffic in the electric power system. An Advanced Quantum Evolutionary Algorithm (AQEA) for QoS multicast routing optimization is proposed to fulfill the requirements of multicast traffic in electric power communication network, e.g. bandwidth, delay, packet loss, etc. Our approach combines Quantum Evolutionary Algorithm and Minimum Spanning Tree algorithm. First, the current location of individual is represented by probability amplitudes of quantum bits. Quantum crossover is implemented in quantum individuals to keep better gene. Second, quantum gates update and adaptive adjustment of the searching area is achieved according to the phase of quantum bit. A dynamic adjusting mechanism of rotation angle is designed to update the individual pheromone, which can guarantee the strong population diversity and quickly find out the feasible solutions that satisfy all constraints as well. It overcomes the restriction of local optimization in traditional algorithms. Thirdly, Steiner minimal tree is generated with OMST (Optimized Minimum Spanning Tree) algorithm, which ensures a better performance of solutions in precision and speed. Simulations show AQEA has better optimization quality and efficiency in comparing with traditional Ant Colony Algorithm and Quantum Evolutionary Algorithm. Simulation results manifest that the cost and convergence time of the multicast tree obtained by AQEA superior to other evolutionary algorithms. This trend will be more distinct as the nodes increase. Simulations also declare the validity of the strategies in AQEA.
宦海、黄敏
通信
改进量子进化算法(AQEA)电力通信网多播QoSOMST
dvanced Quantum Evolutionary Algorithm (AQEA)electric power communication networkmulticastQoSOMST
宦海,黄敏.电力通信网络中QoS多播路由优化改进量子进化算法[EB/OL].(2017-03-24)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201703-326.点此复制
评论