|国家预印本平台
首页|基于MapReduce的个性化推荐算法研究

基于MapReduce的个性化推荐算法研究

MapReduce-based Personalized Recommedation Algorithm Research

中文摘要英文摘要

个性化推荐使得用户从浩瀚信息检索查找中解放出来,成为一种继搜索引擎之后获取信息的重要方式。协同过滤因为其算法简单,能够处理复杂对象,并且推荐效果优异,成为个性化推荐中最成功和应用最广泛的技术。而基于内容推荐很好解决了协同过滤所面临数据稀疏性、冷启动问题。本文在此基础上提出了一种新的混合推荐算法Hybrid-TopN,融合协同过滤推荐和基于内容推荐,最终在Hadoop平台上并行化实现,较好解决了传统推荐算法遇到的瓶颈问题,提高了推荐准确率和召回率,降低了时间复杂度。

he personalized recommendation, through which users are free from the vast information retrieval, is an important way to obtain information after search engine. Collaborative filtering, a simple algorithm, is able to handle complicate objects and have good reommendations, becoming the most successful and the most widely used technology in personalized recommendation. Content-based recommendation figures out data sparsity and cold start problems collaborativer filtering facing. On this basis, this paper proposes a hybrid recommendation algorithm Hybrid-TopN, which fuses collaobrative filtering and content-based recommendation and implements parallelly on Hadoop platform. The Algorithm sovles the bottleneck problems of traditional collaborative filtering algorithm, improves recommendation accuracy and recall rate and reduces the time complexity.

卢美莲、曹一鸣

计算技术、计算机技术

个性化推荐协同过滤基于内容推荐混合推荐并行化

Personal RecommendationCollaborative FilteringContent-based RecommendationHybrid RecommendationParallelization

卢美莲,曹一鸣.基于MapReduce的个性化推荐算法研究[EB/OL].(2012-12-28)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201212-1131.点此复制

评论