基于Fisher检测算法的次声信号检测
Infrasound signal detection based on Fisher detection algorithm
在使用Fisher检测算法进行次声事件检测时,为尽可能减少虚假噪声信号数量,降低算法虚警率,本文应用基于欧式距离的相似性聚类算法,即Fisher检测算法会设置较低的Fisher阈值以获取尽量多的显著性次声事件,同时利用聚束形成算法计算显著性次声事件所对应的方位角、速度、多阵元数据相似度、频率等参数,然后按照相似性规则将参数进行聚类。为了验证聚类算法在降低虚警率上的可行性,本文使用汤加火山爆发的次声数据进行实验,其结果证明:使用相似性聚类算法可以有效减少误检的噪声信号数量,提升Fisher检测算法的准确度和可靠性。
In order to reduce the number of false noise signals and reduce the false alarm rate of the algorithm when Fisher detection algorithm is used for infrasound detection, this paper applies a similarity clustering algorithm based on Euclidean-distance, that is, the Fisher detection algorithm will set a lower Fisher threshold to obtain as many significant infrasonic events as possible. At the same time, the beamforming algorithm is used to calculate the azimuth Angle, velocity, data similarity, frequency and other parameters corresponding to the significant infrasound event, and then the parameters are clustered according to the similarity rules. In order to verify the feasibility of the clustering algorithm in reducing the false alarm rate, this paper uses the infrasound data of Tonga volcanic eruption for event detection. The results show that the similarity clustering algorithm can effectively reduce the number of false detected noise signals and improve the accuracy and reliability of Fisher detection algorithm.
刘玉雪、崔毅东
地球物理学声学工程
次声检测算法Fisher检测算法虚警率相似性聚类
infrasound detection algorithmfisher detectionfalse alarm ratesimilarity clustering
刘玉雪,崔毅东.基于Fisher检测算法的次声信号检测[EB/OL].(2022-11-17)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/202211-33.点此复制
评论