$L^2$ geometry of hyperbolic monopoles
$L^2$ geometry of hyperbolic monopoles
It is well-known that the $L^2$ metric on the moduli space of hyperbolic monopoles, defined using the Coulomb gauge-fixing condition, diverges. This article shows that an alternative gauge-fixing condition inspired by supersymmetry cures this divergence. The resulting geometry is a hyperbolic analogue of the hyperkähler geometry of Euclidean monopole moduli spaces.
Guido Franchetti、Derek Harland
数学物理学
Guido Franchetti,Derek Harland.$L^2$ geometry of hyperbolic monopoles[EB/OL].(2025-08-06)[2025-08-24].https://arxiv.org/abs/2408.07145.点此复制
评论