|国家预印本平台
首页|$L^2$ geometry of hyperbolic monopoles

$L^2$ geometry of hyperbolic monopoles

$L^2$ geometry of hyperbolic monopoles

来源:Arxiv_logoArxiv
英文摘要

It is well-known that the $L^2$ metric on the moduli space of hyperbolic monopoles, defined using the Coulomb gauge-fixing condition, diverges. This article shows that an alternative gauge-fixing condition inspired by supersymmetry cures this divergence. The resulting geometry is a hyperbolic analogue of the hyperkähler geometry of Euclidean monopole moduli spaces.

Guido Franchetti、Derek Harland

数学物理学

Guido Franchetti,Derek Harland.$L^2$ geometry of hyperbolic monopoles[EB/OL].(2025-08-06)[2025-08-24].https://arxiv.org/abs/2408.07145.点此复制

评论