|国家预印本平台
首页|基于多模态深度学习的共享短租重复入住预测模型

基于多模态深度学习的共享短租重复入住预测模型

Multi-modal deep learning based prediction model of shared short lease and repeated occupancy

中文摘要英文摘要

共享短租平台在过去十多年经历了快速的发展,客户群体增长已趋于平缓,如何提升客户留存率、建立稳定的平台-客户信赖关系,已成为在线短租平台运营商和房屋提供者面临的主要挑战。本研究提出了基于多模态深度学习的Airbnb房客重复入住预测模型。依据信任机制和服务体验等相关理论提取多模态特征,提出了融合数值、枚举、文字、图像多模态数据处理的深度学习模型。在包括数万个房客重复入住行为的数据上,该文提出的方法在准确率、召回率和F值三个指标是都达到或接近90%,同时也证实基于多模态数据的预测效果显著优于单模态数据。该研究为平台运营商和房源提供者提高客户重复入住提供了一定的理论和方法指导,相关预测方法也具有一定的创新性。

How to improve customer retention and establish a stable platform-customer trust relationship has become a major challenge for online short-term rental platform operators and housing providers. This study proposes a prediction model for Airbnb guest repeat stays based on multimodal deep learning. According to the trust mechanism and service experience and other related theories, multimodal features are extracted, and a deep learning model integrating numeric, enumeration, text and image multimodal data processing is proposed. In the data including tens of thousands of repeated check-in behaviors of tens of thousands of guests, the proposed method reaches or approaches 90% in the three indicators of accuracy, recall rate and F-value, and also confirms that the prediction effect based on multimodal data is significantly better than that of single-modal data. This study provides certain theoretical and methodological guidance for platform operators and property providers to increase customer repeat stays, and the relevant prediction methods are also innovative.

张雷瀚、张瀚文、闫强

计算技术、计算机技术

管理科学与工程共享短租重复入住多模态深度学习预测模型

Management science and engineeringOnline short-term rentalRepeat check-insMultimodalityDeep learningPredictive models

张雷瀚,张瀚文,闫强.基于多模态深度学习的共享短租重复入住预测模型[EB/OL].(2023-03-02)[2025-08-19].http://www.paper.edu.cn/releasepaper/content/202303-22.点此复制

评论