|国家预印本平台
首页|亚稳态存活概率与时间的蒙特卡罗研究

亚稳态存活概率与时间的蒙特卡罗研究

Monte Carlo studies of survival probability and time of metastable state

中文摘要英文摘要

本文考虑了一个系统在亚稳态势中的存活问题,即逆Kramers问题。用蒙特卡罗方法模拟了初始在势阱以外的粒子进入亚稳态势的存活与逃逸过程,结果发现粒子在亚稳态势中存活概率的稳定值小于粒子通过倒谐振子势垒的概率。我们加入了反射边界的影响,对粒子通过亚稳势鞍点的概率进行了修正,得到了粒子在亚稳态势存活概率的解析公式。还计算了粒子在不同情况下在亚稳势中的平均存活时间,找到了使粒子在势阱中存活时间最长的条件。

he survival problem of a system in a metastable potential, namely, inverse Kramers problem, is considered. The Monte Carlo method is used to simulate the survival and the escape probablities of the particle in the metastable potential whose the initial position is outside the well. It is shown that the stable value of survival probability of the particle in the metastable potential is lower than the probability passing over the inverse harmonic oscillator potential. We correct the analytical result of barrier passing probability through considering reflection boundary and get a new expression of the survival probability. We also calculate the mean survival time of the particle in the metastable potential under various parameters and find the optimum condition to make the mean survival time become the longest.

韩杰、刘秀丽、包景东

物理学

逆Kramers问题亚稳态逃逸存活概率存活时间蒙特卡罗方法

Inverse Kramers problemMetastable escapeSurvival probabilitySurvival timeMonte Carlo method

韩杰,刘秀丽,包景东.亚稳态存活概率与时间的蒙特卡罗研究[EB/OL].(2011-12-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201112-795.点此复制

评论